ANNEXE 4

LES LOGARITHMES

A.4.1 FONCTIONS EXPONENTIELLES ET LOGARITHMIQUES

Soit a une constante réelle positive. La fonction $f:\mathbb{R}\to\mathbb{R}$ qui associe à chaque valeur x une valeur y définie par

$$u = a^{a}$$

est dite exponentielle. Elle est bijective.

EXEMPLE A.4.1

La fonction $y=10^x$ est représentée graphiquement ci-dessous. Nous présentons dans la table suivante quelques couples particuliers (x,y) définis par f.

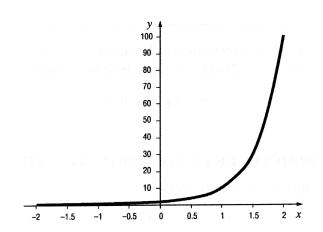


FIG. 4.1 – Courbe exponentielle

La fonction inverse de f est dite logarithmique. Elle est notée

$$x = \log_a y$$

où a est appelée base. Cette fonction n'est définie que si $y \in \mathbb{R}_0^+$.

EXEMPLE A.4.1 (suite 1)

La fonction $x=\log_{10}y$ est la fonction inverse de $y=10^x$. Il suffit de permuter les lignes du tableau présenté ci-dessus pour obtenir quelques coordonnées de points de la courbe logarithmique :

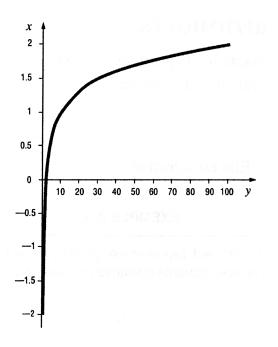


FIG. 4.2 – Fonction logarithmique

Le cas le plus fréquent concerne la base a=10. Si $a=\mathrm{e}$, où e est le nombre de Néper ($\mathrm{e}=2.71828\ldots$), on parle de logarithmes népériens et on utilise indifféremment l'une des deux notations suivantes :

$$x = \log_{e} y$$
 ou $x = \ln y$.

A.4.2 PROPRIÉTÉS DE LA FONCTION LOGARITHMIQUE

Quelle que soit la base a, nous avons :

$$\log_a 1 = 0 \quad \text{et} \quad \log_a a = 1.$$

Par ailleurs, si b, p, p_1, p_2, \ldots sont des réels positifs et n est un entier positif :

$$\begin{split} \log_a(p_1 \times p_2) &= \log_a p_1 + \log_a p_2 \; ; \\ \log_a\left(\frac{p_1}{p_2}\right) &= \log_a p_1 - \log_a p_2 \; ; \\ \log_a(p^n) &= n\log_a p \; ; \\ \log_a p &= \log_a b\log_b p \; . \end{split}$$

EXEMPLE A.4.2

La moyenne géométrique de trois nombres positifs p_1 , p_2 et p_3 est définie par (voir chapitre 3) :

$$G = \sqrt[3]{p_1 \times p_2 \times p_3} = (p_1 \times p_2 \times p_3)^{1/3}.$$

En utilisant les propriétés ci-dessus, nous pouvons écrire, en prenant par exemple les logarithmes en base 10 :

$$\log_{10} G = \frac{1}{3} \log_{10} (p_1 \times p_2 \times p_3)$$
$$= \frac{1}{3} (\log_{10} p_1 + \log_{10} p_2 + \log_{10} p_3).$$

Ainsi, dans le cas où $p_1=8,\,p_2=16$ et $p_3=24,\,$ le recours à des tables de logarithmes (voir table 2), ou une machine à calculer, nous indique que :

$$\log_{10} G = \frac{1}{3} (\log_{10} 8 + \log_{10} 16 + \log_{10} 24)$$

$$= \frac{1}{3} (0.9031 + 1.2041 + 1.3802) = 1.1625$$

$$\Rightarrow G = 10^{1.1625} = 14.54.$$

Une *échelle logarithmique* consiste à représenter une valeur p sur une échelle graduée par un point dont la distance à l'origine vaut $\log_{10} p$. Ainsi les nombres $1,\ 10,\ 52,\ 100,\ 1\ 000,\ldots$ sont représentés par les points de coordonnées $0,\ 1,\ 1.716,\ 2,\ 3,\ldots$

Cette échelle permet notamment de tasser vers le bas les valeurs élevées d'une variable (voir chapitre 2, paragraphe 2.5.2).

A.4.3 EXERCICES PROPOSÉS

E.A.4.1 Calculez la moyenne géométrique des nombres 8, 16 et 32, en recourant à des logarithmes en base 10 et en base 2.

E.A.4.2 Calculez la moyenne géométrique des nombres 105, 287, 345 et 456.

E.A.4.3 Représentez sur une échelle logarithmique (logarithmes en base 10) les valeurs 2, 12, 151, 3 600 et 15 345.

E.A.4.4 Si x_1 et x_2 sont deux valeurs positives, comment peut-on déterminer $\log(x_2/x_1)$ sur une échelle logarithmique ?