ANNEXE 2

LES FONCTIONS

A.2.1 DÉFINITION D'UNE FONCTION

Soient A et B deux ensembles donnés. Supposons qu'à chaque élément $a \in A$, on associe un élément $b \in B$. L'ensemble de ces associations définit une **fonction** ou **application** de A dans B, ce qu'on écrit :

$$f: A \to B$$
 ou $A \xrightarrow{f} B$

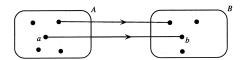


FIG. 2.1 – Graphe d'une fonction

Si $b\in B$ est associé à $a\in A$, on écrit b=f(a); b est appelé l'image de a. À chaque fonction $f:A\to B$ correspond le sous-ensemble de $A\times B$ défini par :

$$\{(x,y)|x \in A, y = f(x) \in B\}.$$
 (2.1)

EXEMPLE A.2.1

Soient $A=\{1,2\}$ et $B=\{1,2,3,4\}$. Définissons la fonction f qui associe à tout élément x de A une valeur y de B égale au double de x.

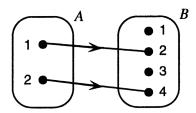


FIG. 2.2 – Graphe de la fonction

Au vu de la figure 2.2, on constate que f est définie par le sous-ensemble de $A\times B$ suivant :

$$f = \{(1,2), (2,4)\} = \{(x,y)|y = 2x, x \in A\},\$$

ce qu'on énonce encore en disant que f est définie par

$$y=2x\;,\quad \text{où}\quad x\in\{1,2\}.$$

Un cas particulier intéressant est celui où le domaine de définition de f, noté A ci-dessus, est l'ensemble $\mathcal{P}(\Omega)$ des parties d'un ensemble de référence Ω . On parle alors de **fonction d'ensembles**.

EXEMPLE A.2.2

Reprenons l'exemple A.1.2 de l'annexe 1, dans lequel $\Omega=\{1,2,3,4\}$. Nous pouvons définir sur $\mathcal{P}(\Omega)$ une fonction f qui associe à chaque sous-ensemble E de Ω le nombre d'éléments qu'il contient :

$$f: \mathcal{P}(\Omega) \to \mathcal{V} = \{0, 1, 2, 3, 4\}.$$

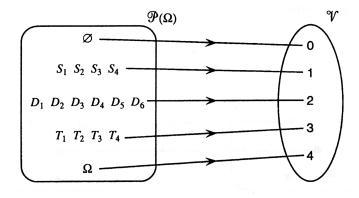


FIG. 2.3 – Graphe de f

Ainsi, par exemple:

$$f(\emptyset) = 0$$
, $f(S_2) = 1$, $f(D_4) = 2$, $f(T_3) = 3$, $f(\Omega) = 4$.

Soit $f:A\to B$. Si les images de deux éléments distincts de A sont des éléments distincts de B, f définit une **injection**. Si, de plus, chaque élément de B est une image d'un élément de A, on parle de **bijection**. Dans ce cas, à chaque $b\in B$, on peut faire correspondre un élément $a\in A$ tel que b=f(a). On écrit alors que $a=f^{-1}(b)$. La fonction $f^{-1}:B\to A$ est dite **fonction inverse**.

A.2.2 GRAPHE D'UNE FONCTION

On appelle *graphe d'une fonction* f la représentation graphique des couples (x,y) définis par (2.1). Lorsque A est fini, on peut utiliser les diagrammes de Venn. Lorsque A et B sont inclus ou égaux à \mathbb{R} , on peut faire appel à une représentation dans un repère ; f est alors définie par un sousensemble de \mathbb{R}^2 .

EXEMPLE A.2.3

Reprenons l'exemple A.2.1 en remplaçant A et B par $\mathbb{R}: f=\{(x,y)|y=2x,x\in\mathbb{R}\}.$ Prenons quelques couples particuliers de cet ensemble :

f définit ainsi une droite passant par l'origine 0.

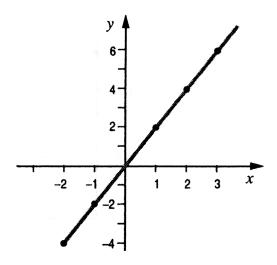


FIG. 2.4 – Représentation d'une droite

On peut remarquer que la fonction f est bijective. La fonction inverse f^{-1} est dès lors définie par :

$$f^{-1} = \{(y, x) | x = y/2, y \in \mathbb{R}\}.$$

La représentation graphique d'une droite dans un plan s'effectue en définissant un repère (ou système de coordonnées cartésiennes). On considère deux droites réelles orthogonales se coupant en un point 0, appelé *origine*. On oriente chaque droite comme dans la figure 2.4. On définit une échelle sur

chaque axe ainsi construit en choisissant une $unit\acute{e}$ sur chacun d'eux et en les graduant ensuite. Un point du plan (x,y) est alors représenté de telle sorte que la projection de ce point sur l'axe 0x correspond à la graduation x (abscisse du point) et que la projection de ce point sur l'axe 0y correspond à la graduation y (ordonnée du point).

EXEMPLE A.2.4

Représentons graphiquement la droite d'équation

$$y = 2x + 1,$$

où $x\in\mathbb{R}$. Considérons quelques valeurs particulières des couples (x,y) définis par cette équation :

En joignant ces points par une droite, on obtient le graphique de la figure 2.5.

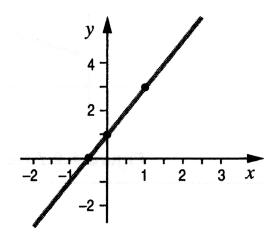


FIG. 2.5 – Représentation de y = 2x + 1

Si on considère l'équation générale d'une droite y=a+bx, où $x\in\mathbb{R}$, a et b étant deux constantes réelles, on constate que :

- 1. l'*ordonnée à l'origine* a est égale à la valeur de y pour laquelle x=0 (intersection de la droite et de l'axe 0y);
- 2. le *coefficient angulaire* b mesure l'accroissement de y correspondant à un accroissement unitaire de x; b est encore appelé la *pente* de la droite.

Remarquons enfin qu'une droite est définie dès que l'on connaît deux de ses points. Ainsi, on peut montrer que la droite passant par les points (x_1,y_1)

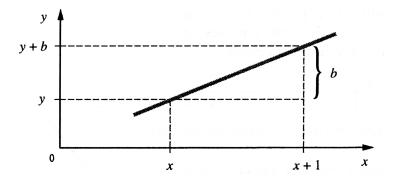


FIG. 2.6 – Représentation de y = a + bx

et (x_2, y_2) est définie par l'équation

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1). \tag{2.2}$$

EXEMPLE A.2.5

La droite passant les points (2,2) et (4,3) a pour équation :

$$y-2 = \frac{3-2}{4-2}(x-2) \Rightarrow y = 0.5x + 1.$$

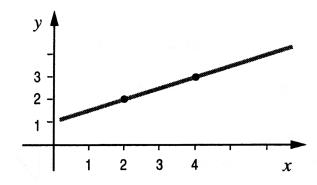


Fig. 2.7 – Représentation de y = 0.5x + 1

A.2.3 EXERCICES PROPOSÉS

E.A.2.1 Soient $A = \{1, 2\}$ et $B = \{1, 2, 3, 4, 5, 6\}$. Définissez le sous-ensemble de $A \times B$ qui correspond à la fonction $f: A \to B$ associant à tout élément x de A une valeur y de B égale au triple de x.

E.A.2.2 Soit $\Omega = \{a, b, c\}$. Définissez la fonction d'ensembles f qui, à tout sousensemble E de Ω , fait correspondre le nombre d'éléments de E.

E.A.2.3 Soit $\Omega = \{(x,y)|x \in \{1,2\} \text{ et } y \in \{1,2,3\}\}$. Définissez la fonction d'ensembles f qui, à tout sous-ensemble E de Ω , fait correspondre le nombre d'éléments de E tels que x < y.

E.A.2.4 Soient $A = \mathbb{R}$ et $B = \mathbb{R}$. Définissez et représentez graphiquement la fonction f décrite à l'exercice E.A.2.1.

E.A.2.5 Définissez et représentez graphiquement les fonctions suivantes de $\mathbb R$ dans $\mathbb R$:

- (a) à chaque nombre, f associe son cube;
- (b) à chaque nombre, g associe le nombre 5;
- (c) à chaque nombre strictement positif, h associe son carré et à chaque nombre non positif, h associe le nombre 6.

Trouvez aussi les valeurs prises par chaque fonction pour x = 4, x = -2 et x = 0.

E.A.2.6 Représentez graphiquement les fonctions suivantes :

- (a) $f: \mathbb{R} \to \mathbb{R}$, définie par $y = f(x) = x^2 + x 6$;
- (b) $g: \mathbb{R} \to \mathbb{R}$, définie par $y = g(x) = x^2 + 3$.

 $\begin{tabular}{ll} \hline \textbf{E.A.2.7} \\ \hline \end{tabular}$ Tracez, dans un système de coordonnées cartésiennes, les droites d'équation $^{(1)}$:

- (a) $D_1: y = x + 4$;
- (b) $D_2: y = -2x + 3;$
- (c) $D_3: y = x/2 + 3/4$;
- (d) $D_4: y = 5/2$;
- (e) $D_5: x=4$.

E.A.2.8 Déterminez l'équation de la droite passant par les points :

- (a) (0,0) et (2,4);
- (b) (-1,-1) et (1,1);
- (c) (1,2) et (4,5);
- (d) (2,3) et (4,3);
- (e) (4,5) et (6,-2).

⁽¹⁾ On indique qu'une droite D est d'équation y = a + bx par la notation D: y = a + bx.